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Abstract

The paper presents a family of variational formulations of Trefftz finite elements wherein the assumed internal

displacement and electric potential fields a priori fulfil the governing differential equations of the problem over the

element sub-domain, while the inter-element continuity and the boundary conditions are enforced using a modified

variational principle together with an independent frame field defined on each element boundary. It is based on four

free energy densities, each with two kinds of independent variables as basic independent variables, i.e. ðr;DÞ, ðe;EÞ,
ðe;DÞ, and ðr;EÞ. Based on the assumed intra-element and frame fields, an element stiffness matrix equation is obtained
which is implemented into computer programs for numerical analysis. Some numerical examples are considered to show

the application of the proposed formulation.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Variational functionals are essential and play a central role in the formulation of the fundamental

governing equations in the Trefftz finite element method (TFEM). They are at the heart of many numerical

methods such as boundary element methods, finite volume methods and TFEMs (Qin, 2000). During the

past decades, much work has been done concerning variational formulations for Trefftz numerical methods

(Jirousek, 1993; Jirousek and Zielinski, 1993; Piltner, 1985; Qin, 2000). Piltner (1985) presented two dif-
ferent variational formulations to treat special elements with holes or cracks. The formulation consists of a

conventional potential energy and a least square functional. The least square functional is not added as a

penalty function to the potential functional, but is minimized separately for the special elements consid-

ered. Jirousek (1993) developed a variational functional in which either the displacement conformity or the

reciprocity of the conjugate tractions is enforced at the element interface. Jirousek and Zielinski (1993)

obtained two complementary hybrid Trefftz formulations based on a weighted residual method. The dual
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formulations enforced more strongly the reciprocity of boundary tractions than the conformity of the

displacement fields. Qin (2000) presented a modified variational principle based hybrid Trefftz displace-

ment frame. The variational functional of Qin (2000) is, however, limited in that nodes containing un-

known displacements must connect with at least one inter-element boundary. To remove this limitation, we
present a set of variational functional for TFEM and apply it to piezoelectric problems in this paper. It

entails four variational functionals which are based on four free energy densities, each with two kinds of

independent variables as basic independent variables, i.e. ðr;DÞ, ðe;EÞ, ðe;DÞ, and ðr;EÞ. The stationary
conditions of these variational functionals and their theorem on the existence of extremum are also dis-

cussed. The stationary conditions are displacement and electric potential conditions on the boundary,

surface traction and surface charge condition, and inter-element continuity condition. These functionals

are suitable for piezoelectric analysis with TFEM. Numerical results are found to agree well with the

analytical solutions.
2. Basic equations for TFEM of piezoelectricity

2.1. Basic field equations and boundary conditions

Consider a linear piezoelectric material, in which the differential governing equations in the Cartesian

coordinates xi ði ¼ 1; 2; 3Þ are given by
rij;j þ �bbi ¼ 0; Di;i þ �qqb ¼ 0 in X ð1Þ

where rij is the stress tensor, Di is the electric displacement vector, a comma denotes partial differentiation

with respect to the coordinate xi, �bbi is the body force vector, �qqb is the electric charge density, X is the

solution domain, and the Einstein summation convention over repeated indices is used. For an anisotropic

piezoelectric material, the constitutive relation is
eij ¼ � oHðr;DÞ
orij

¼ sDijklrkl þ gkijDk; Ei ¼
oHðr;DÞ

oDi
¼ �giklrkl þ kr

ikDk ð2aÞ
for (r;D) as basic variables,
rij ¼
oHðe;EÞ

oeij
¼ cEijklekl � ekijEk; Di ¼ � oHðe;EÞ

oEi
¼ eiklekl þ je

ikEk ð2bÞ
for ðe;EÞ as basic variables,
rij ¼
oHðe;DÞ

orij
¼ cDijklekl þ hkijDk; Ei ¼

oHðe;DÞ
oDi

¼ hiklekl þ ke
ikDk ð2cÞ
for ðe;DÞ as basic variables, and
eij ¼ � oHðr;EÞ
orij

¼ sEijklrkl þ dkijDk; Di ¼ � oHðr;EÞ
oEi

¼ diklrkl þ jr
ikEk ð2dÞ
for ðr;EÞ as basic variables, with

Hðr;DÞ ¼ �1

2
sDijklrijrkl þ 1

2
kr
ijDiDj � gkijrijDk ð3aÞ

Hðe;EÞ ¼ 1
2
cEijkleijekl � 1

2
je
ijEiEj � ekijeijEk ð3bÞ

Hðe;DÞ ¼ 1
2
cDijkleijekl þ 1

2
ke
ijDiDj þ hkijeijDk ð3cÞ
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Hðr;EÞ ¼ �1
2
sEijklrijrkl � 1

2
jr
ijEiEj � dkijrijEk ð3dÞ
where cEijkl, c
D
ijkl and sEijkl, s

D
ijkl are the stiffness and compliance coefficient tensor for E ¼ 0 or D ¼ 0, jr

ij, je
ij

and kr
ij, ke

ij are the permittivity matrix and the conversion of the permittivity constant matrix for r ¼ 0 or

e ¼ 0, eij and Ei are, respectively, the elastic strain tensor and the electric field intensity vector, ekij is
piezoelectric stress constants, gkij is piezoelectric strain constants. These constants have the following re-

lations:
cE ¼ ðsEÞ�1; e ¼ cEd; je ¼ jr � dTced; sD ¼ ðcEÞ�1 � dðjrÞ�1dT; g ¼ dðjrÞ�1;
cD ¼ cE � cEdðjeÞ�1dTcE; h ¼ �cEdðjeÞ�1; ke ¼ ðjeÞ�1; kr ¼ ðjrÞ�1 ð4Þ
where superscript �T � denotes the transposition of a matrix.

The relation between the strain tensor and the displacement, ui, is given by
eij ¼ 1
2
ðui;j þ uj;iÞ ð5Þ
and the electric field components are related to the electric potential / by
Ei ¼ �/;i ð6Þ
The boundary conditions of the boundary value problem (1)–(6), can be given by:
ui ¼ �uui on Cu ð7Þ
ti ¼ rijnj ¼ �tti on Ct ð8Þ
Dn ¼ Dini ¼ ��qqn ¼ Dn on CD ð9Þ
/ ¼ �// on C/ ð10Þ
where �uui, �tti, �qqn and �// are, respectively, prescribed boundary displacement, traction vector, surface charge

and electric potential, an overhead bar denotes prescribed value, C ¼ Cu þ Ct ¼ CD þ C/ is the boundary of
the solution domain X.

Moreover, in the Trefftz finite element form, Eqs. (1)–(10) should be completed by the following inter-

element continuity requirements:
uie ¼ uif ; /e ¼ /f ðon Ce \ Cf ; conformityÞ ð11Þ
tie þ tif ¼ 0; Dne þ Dnf ¼ 0 ðon Ce \ Cf ; reciprocityÞ ð12Þ
where �e� and �f � stand for any two neighboring elements. Eqs. (1)–(12) are taken as the basis to establish the

modified variational principle for Trefftz finite element analysis of piezoelectric materials.

2.2. Assumed fields

The main idea of the TFEM is to establish a finite element (FE) formulation whereby the intra-element

continuity is enforced on a non-conforming internal displacement field chosen so as to a priori satisfy the

governing differential equation of the problem under consideration (Qin, 2000). In other words, as an

obvious alternative to the Rayleigh–Ritz method as a basis for a FE formulation, the model here is based
on the method of Trefftz (1926). With this method the solution domain is subdivided into elements, and

over each element ‘‘e,’’ the assumed intra-element fields are
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u ¼

u1
u2
u3
/

8>><>>:
9>>=>>; ¼

�uu1
�uu2
�uu3
�//

8>><>>:
9>>=>>;þ

N1

N2

N3

N4

8>><>>:
9>>=>>;c ¼ �uuþ

X
j¼1
Njcj ¼ �uuþNc ð13Þ
where ci stands for undetermined coefficient, and �uuð¼ f�uu1; �uu2; �uu3; �//gTÞ and N are known functions. If the

governing differential equation (1) is rewritten in a general form
RuðxÞ þ �bbðxÞ ¼ 0 ðx 2 XeÞ ð14Þ
where R stands for the differential operator matrix for Eq. (1), x for the position vector,
�bbð¼ ff�bb1; �bb2; �bb3; �qqbgTÞ for the known right-hand side term, the overhead bar indicates the imposed quan-
tities and Xe stands for the eth element sub-domain, then �uu ¼ �uuðxÞ and N ¼ NðxÞ in Eq. (13) have to be

chosen such that
R�uuþ �bb ¼ 0 and RN ¼ 0 ð15Þ
everywhere in Xe. A complete system of homogeneous solutions Nj can be generated by way of the solution

in Stroh formalism
u ¼ 2RefAhf ðzaÞicg ð16Þ
where �Re� stands for the real part of a complex number, A is the material eigenvector matrix which was well

defined in the reference (Qin, 2001, pp. 17, 18), hf ðzaÞi ¼ diag ½f ðz1Þ f ðz2Þ f ðz3Þ f ðz4Þ
 is a diagonal 4 · 4
matrix, while f ðziÞ is an arbitrary function with argument zi ¼ x1 þ pix2 � pi ði ¼ 1–4Þ are the material

eigenvalues. Of particular interest is a complete set of polynomial solutions which may be generated by

setting in Eq. (16) in turn
f ðzaÞ ¼ zka
f ðzaÞ ¼ izka

	
ðk ¼ 1; 2; . . .Þ ð17Þ
where i ¼
ffiffiffiffiffiffiffi
�1

p
. This leads, for Nj of Eq. (13), to the following sequence
N2j ¼ 2RefAhzjaig ð18Þ

N2jþ1 ¼ 2RefAhizjaig ð19Þ
The unknown coefficient c may be calculated from the conditions on the external boundary and/or the

continuity conditions on the inter-element boundary. Thus various Trefftz element models can be obtained

by using different approaches to enforce these conditions. In the majority of cases a hybrid technique is

used, whereby the elements are linked through an auxiliary conforming displacement frame which has the

same form as in the conventional FE method. This means that, in the Trefftz finite element approach, a

conforming electric potential and displacement (EPD) field should be independently defined on the element

boundary to enforce the field continuity between elements and also to link the coefficient c, appearing in
Eq. (13), with nodal EPD d ð¼ fdgÞ. The frame is defined as
~uuðxÞ ¼

~uu1
~uu2
~uu3
~//

8>><>>:
9>>=>>; ¼

eNN1eNN2eNN3eNN4

8>><>>:
9>>=>>;d ¼ eNNd ðx 2 CeÞ ð20Þ
where the symbol ‘‘�’’ is used to specify that the field is defined on the element boundary only, d ¼ dðcÞ
stands for the vector of the nodal displacements which are the final unknowns of the problem, Ce represents

the boundary of element e, and eNN is a matrix of the corresponding shape functions which are the same as
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Fig. 1. A quadrilateral element generalized two-dimensional problem.
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those in conventional FE formulation. For example, along the side A–O–B of a particular element (see
Fig. 1), a simple interpolation of the frame displacement and electric potential can be given in the form
~uuðxÞ ¼

~uu1
~uu2
~uu3
~//

8>><>>:
9>>=>>; ¼ ½NA NB 


dA
dB

� 	
ðx 2 CeÞ ð21Þ
where
NA ¼ diag½N1 N1 N1 N1 
; NB ¼ diag½N2 N2 N2 N2 
; ð22Þ

dA ¼ f u1A u2A u3A /A g
T
; dB ¼ f u1B u2B u3B /B g

T ð23Þ
with
N1 ¼
1� n
2

; N2 ¼
1þ n
2

ð24Þ
Using the above definitions the generalized boundary forces and electric displacements can be derived

from Eqs. (8), (9) and (13), and denoted as
T ¼

t1
t2
t3
Dn

8>><>>:
9>>=>>; ¼

r1jnj
r2jnj
r3jnj
Djnj

8>><>>:
9>>=>>; ¼

�tt1
�tt2
�tt3
�DDn

8>><>>:
9>>=>>;þ

Q1

Q2

Q3

Q4

8>><>>:
9>>=>>;c ¼ �TTþQc ð25Þ
where �tti and �DDn are derived from �uu.
3. Modified variational principles

The Trefftz finite element equation for piezoelectric materials can be established by the variational ap-

proach (Qin, 2000). Since the stationary conditions of the traditional potential and complementary vari-

ational functional cannot satisfy the inter-element continuity condition which is required in the Trefftz finite

element analysis, some new variational functionals need to be developed. For this purpose, we present the

following four modified variational functionals suitable for Trefftz finite element analysis:
PrD
m ¼

X
e

PrD
me ¼

X
e

PrD
e

�
�
Z

CDe

ðDn � DnÞ ~//ds�
Z

Cte

ð�tti � tiÞ~uui dsþ
Z

CIe

ðDn
~// þ ti~uuiÞds

	
ð26aÞ
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PeE
m ¼

X
e

PeE
me

¼
X
e

PeE
e

(
þ
Z

C/e

ð �// � /ÞeDDn dsþ
Z

Cue

ð�uui � uiÞ~tti ds� 2

Z
Cte

~uuiti ds� 2

Z
CDe

~//Dn ds�
Z

CIe

ð ~//Dn þ ~uuitiÞds
)

ð26bÞ

PeD
m ¼

X
e

PeD
me

¼
X
e

PeD
e

�
�
Z

CDe

ðDn � DnÞ ~//dsþ
Z

Cue

ð�uui � uiÞ~tti ds� 2

Z
Cte

~uuiti dsþ
Z

CIe

ðDn
~// � ti~uuiÞds

	
ð26cÞ

PrE
m ¼

X
e

PrE
me

¼
X
e

PrE
e

(
þ
Z

C/e

ð �// � /ÞeDDn ds�
Z

Cte

ð�tti � tiÞ~uui ds� 2

Z
CDe

Dn
~//ds�

Z
CIe

ðDn
~// � ti~uuiÞds

)
ð26dÞ
where
PrD
e ¼

ZZ
Xe

Hðr;DÞdX þ
Z

Cue

ti�uui dsþ
Z

C/e

Dn
�//ds ð27aÞ

PeE
e ¼

ZZ
Xe

½Hðe;EÞ � �bbiui � �qqb/
dX þ
Z

Cte

�tti~uui dsþ
Z

CDe

Dn
~//ds; ð27bÞ

PeD
e ¼

ZZ
Xe

½Hðe;DÞ � �bbiui
dX þ
Z

Cte

�tti~uui dsþ
Z

C/e

Dn
�//ds ð27cÞ

PrE
e ¼

ZZ
Xe

½Hðr;EÞ
 � �qqb/
dX þ
Z

Cue

ti�uui dsþ
Z

CDe

Dn
~//ds ð27dÞ
in which Eq. (1) is assumed to be satisfied, a priori. The terminology ‘‘modified principle’’ refers here to the

use of a conventional functional (Pxy
e here) and some modified terms for the construction of a special

variational principle to account for additional requirements such as the condition defined in Eqs. (11) and

(12).

The boundary Ce of a particular element consists of the following parts:
Ce ¼ Cue [ Cte [ CIe ¼ C/e [ CDe [ CIe ð28Þ

where
Cue ¼ Cu \ Ce; Cte ¼ Ct \ Ce; C/e ¼ C/ \ Ce; CDe ¼ CD \ Ce ð29Þ
and CIe is the inter-element boundary of the element �e�. We now show that the stationary condition of

the functional (26) leads to Eqs. (7)–(12), ðui ¼ ~uui on Ct) and (/ ¼ ~// on CD), and present the theorem on the

existence of extremum of the functional, which ensures that an approximate solution can converge to the
exact one. Taking PrD

m as an example, we have the following two statements:

(a) Modified complementary principle
dP
rD
m ¼ 0 ) ð7Þ–ð12Þ ðui ¼ ~uui on CtÞ and ð/ ¼ ~// on CDÞ ð30Þ
where d stands for the variation symbol.
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(b) Theorem on the existence of extremum

If the expression
ZZ
X

d2Hðr;DÞdX þ
Z

Ct

dtid~uui dsþ
Z

CD

dDnd ~//dsþ
X
e

Z
CIe

ðd ~//dDn þ d~uuidtiÞds ð31Þ
is uniformly positive (or negative) in the neighborhood of u0, where u0 is such a value that

PrD
m ðu0Þ ¼ ðPrD

m Þ0, and where ðPrD
m Þ0 stands for the stationary value of PrD

m , we have
PrD
m P ðPrD

m Þ0 ½or PrD
m 6 ðPrD

m Þ0
 ð32Þ

in which the relation that ~uue ¼ ~uuf is identical on Ce \ Cf has been used.

Proof. First, we derive the stationary conditions of functional (26a). To this end, performing a variation of

PrD
m and noting that Eq. (1) holds true a priori by the previous assumption, we obtain
dPrD
m ¼

Z
Cu

ð�uui � uiÞdti dsþ
Z

C/

ð �// � /ÞdDn ds�
Z

Ct

½ð�tti � tiÞd~uui � ð~uui � uiÞdti
ds

�
Z

CD

½ðDn � DnÞd ~// � ð ~// � /ÞdDn
dsþ
X
e

Z
CIe

½ð~uui � uiÞdti þ ð ~// � /ÞdDn þ tid~uui þ Dnd ~//
ds

ð33Þ
Therefore, the Euler equations for expression (33) are Eqs. (7)–(12), ðui ¼ ~uui on Ct), and (/ ¼ ~// on CD), as

the quantities dti, dui, d/, dDn, d~uui and d ~// may be arbitrary. The principle (30) has thus been proved. This

indicates that the stationary condition of the functional satisfies the required boundary and inter-element

continuity equations and can thus be used for deriving Trefftz finite element formulation.
As for the proof of the theorem on the existence of extremum, we may complete it by way of the

so-called ‘‘second variational approach’’ (Simpson and Spector, 1987). In doing this, performing variation

of dPrD
m and using the constrained conditions (1), we find
d2PrD
m ¼

ZZ
X

d2Hðr;DÞdX þ
Z

Ct

dtid~uui dsþ
Z

CD

dDnd ~//dsþ
X
e

Z
CIe

ðd ~//dDn þ d~uuidtiÞds

¼ expression ð31Þ ð34Þ
Therefore the theorem has been proved from the sufficient condition of the existence of a local extreme

of a functional (Simpson and Spector, 1987). This completes the proof. The functional given in Eqs. (26b)–

(26d) can be stated and proved similarly. We omit those details for the sake of conciseness. �
4. Element stiffness matrix

The element matrix equation can be generated by setting dPxy
me ¼ 0. To simplify the derivation, we first

transform all domain integrals in Eq. (26a) into boundary ones. In fact, by reason of the solution properties

of the intra-element trial functions, the functional PrD
me can be simplified to
PrD
me ¼ � 1

2

Z
Ce

ðtiui þ Dn/Þds�
1

2

Z
X
ð�bbiui þ �qqb/ÞdX �

Z
CDe

ðDn � DnÞ ~//ds�
Z

Cte

ð�tti � tiÞ~uui ds

þ
Z

C
ðDn

~// þ ti~uuiÞdsþ
Z

Cue

ti�uui dsþ
Z

C
Dn

�//ds ð35Þ

Ie /e
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Substituting the expressions given in Eqs. (13), (20), and (25) into (35) produces
PrD
me ¼ �1

2
cTHcþ cTSdþ cTr1 þ dTr2 þ terms without c or d ð36Þ
in which the matrices H, S and the vectors r1, r2 are defined by
H ¼
Z

Ce

QTNds ð37Þ

S ¼
Z

CDe

QT
4
eNN4 dsþ

Z
Cte

Q1

Q2

Q3

24 35T eNN1eNN2eNN3

24 35dsþ Z
Ce

QT eNN ds ð38Þ

r1 ¼ � 1

2

Z
Ce

ðNT�TTþQT�uuÞds� 1

2

Z
X
NT�bbdX þ

Z
C/e

QT
4
�//dsþ

Z
Cue

Q1

Q2

Q3

24 35T
�uu1
�uu2
�uu3

8<:
9=;ds ð39Þ

r2 ¼
Z

CDe

eNN T
4 ð �DDn � DnÞdsþ

Z
Ce

eNNT�TTdsþ
Z

Cte

eNN1eNN2eNN3

24 35T
�tt1
�tt2
�tt3

8<:
9=;

0@ �
�tt1
�tt2
�tt3

8<:
9=;
1Ads ð40Þ
To enforce inter-element continuity on the common element boundary, the unknown vector c should be
expressed in terms of nodal DOF d. An optional relationship between c and d in the sense of variation can

be obtained from
oPrD
me

ocT
¼ �Hcþ Sdþ r1 ¼ 0 ð41Þ
This leads to
c ¼ Gdþ g ð42Þ

where G ¼ H�1S and g ¼ H�1r1, and then straightforwardly yields the expression of PrD

me only in terms of d

and other known matrices
PrD
me ¼ 1

2
dTGTHGdþ dTðGTHgþ r2Þ þ terms without d ð43Þ
Therefore, the element stiffness matrix equation can be obtained by taking the vanishing variation of the

functional PrD
me as
oPrD
me

odT
¼ 0 ) Kd ¼ P ð44Þ
where K ¼ GTHG and P ¼ �GTHg� r2 are, respectively, the element stiffness matrix and the equivalent

nodal flow vector. The expression (44) is the elemental stiffness-matrix equation for Trefftz finite element

analysis.
5. Numerical examples

Since the main purpose of this paper is to outline the basic principles of the TFEM in piezoelectric

materials, the assessment will be limited to two simple examples. In order to allow for comparisons with

other solutions appearing in references (Ding et al., 1998; Pak, 1990), the obtained results are limited to a
piezoelectric prism subjected to simple tension and an anti-plane crack of length 2c embedded in an infinite
PZT-5H medium.
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Fig. 2. Geometry of the piezoelectric prism in example.
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Example 1. A piezoelectric prism subjected to simple tension (see Fig. 2). This example was taken from

Ding et al. (1998) for a PZT-4 ceramic prism subject to a tension P ¼ 10 Nm�2 in y-direction. The
properties of the material are given as follows
Table

u1, u2,

TFE

u1 �
u2 �
/ (V

Exa

u1 �
u2 �
/ (V
c1111 ¼ 12:6� 1010 Nm�2; c1122 ¼ 7:78� 1010 Nm�2; c1133 ¼ 7:43� 1010 Nm�2

c3333 ¼ 11:5� 1010 Nm�2; c3232 ¼ 2:56� 1010 Nm�2; e131 ¼ 12:7 Cm�2

e311 ¼ �5:2 Cm�2; e333 ¼ 15:1 Cm�2; j11 ¼ 730j0; j33 ¼ 635j0
where j0 ¼ 8:854� 10�12 C2/Nm2. The boundary conditions of the prism are
ryy ¼ P ; rxy ¼ Dy ¼ 0 on edges y ¼ �b

rxx ¼ rxy ¼ Dx ¼ 0 on edges x ¼ �a
where a ¼ 3 m, b ¼ 10 m. Owing to the symmetry about load, boundary conditions and geometry, only one

quadrant of the prism is modeled by 10 (x-direction) · 20 (y-direction) elements in the TFEM analysis.
Table 1 lists the displacements and electric potential at points A, B, C, and D using the present method and
1

and / of TFEM results and comparison with exact solution

Points

A(2,0) B(3,0) C(0,5) D(0,10)

M

1010 (m) )0.9674 )1.4510 0 0

109 (m) 0 0 0.5009 1.0016

) 0 0 0.6890 1.3779

ct (Pak, 1990)

1010 (m) )0.9672 )1.4508 0 0

109 (m) 0 0 0.5006 1.0011

) 0 0 0.6888 1.3775



Fig. 3. Configuration of the cracked infinite piezoelectric medium.

2 a

2a

2c

Fig. 4. Geometry of the cracked solid in finite element analysis.
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Fig. 5. Energy release rate in cracked PZT-5H plate (a=c ¼ 15, 24· 24, and s1 ¼ 4:2� 106 N/m2).
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Table 2

h-convergence study for J=Jcr central cracked piezoelectric plate (a=c ¼ 15, D1 ¼ 2� 10�3 C/m3, and s1 ¼ 4:2� 106 N/m2)

Meshes J=Jcr

8 · 8 1.5954

12 · 12 1.5908

16 · 16 1.5899

20 · 20 1.5895

24 · 24 1.5893
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comparison is made with analytical results. It is found that the TFEM results are in good agreement with

analytical ones (Ding et al., 1998).

Example 2. An anti-plane crack of length 2c embedded in an infinite PZT-5H medium. Consider an anti-

plane crack of length 2c embedded in an infinite PZT-5H medium which is subjected to a uniform shear

traction, rzy ¼ s1, and a uniform electric displacement, Dy ¼ D1 at infinity (see Fig. 3). The material

properties of PZT-5H are given by Pak (1990): c44 ¼ 3:53� 1010 N/m2, e15 ¼ 17:0 C/m2, j11 ¼ 1:51� 10�8

C/Vm, Jcr ¼ 5:0 N/m, where Jcr is the critical energy release rate. In the calculation, one quarter of the
geometry configuration shown in Fig. 4 is used. The energy release rate for PZT-5H material with a crack of

length 2c ¼ 0:02 m and a=c ¼ 15 (it can be shown that the numerical results is nearly independent of a=c if
a=c ¼ 10) is plotted in Fig. 5 as a function of electrical load with the mechanical load fixed such that J ¼ Jcr
at zero electric load. The results are compared with those from Qin (2000). It is found from Fig. 5 that the

energy release rate can be negative which means the crack growth may be arrested.

To study the convergent performance of the proposed formulation, numerical results for different ele-

ment meshes (8 · 8, 12 · 12, 16 · 16, 20 · 20, and 24 · 24) are presented in Table 2 that the h-extension
performs very nicely.
6. Conclusion

A family of modified variational principles of piezoelectricity is presented for Trefftz finite element
analysis. It includes four variational functionals which are based on four free energy densities, each with

two kinds of independent variables as basic independent variables, i.e ðr;DÞ, ðe;EÞ, ðe;DÞ, and ðr;EÞ. The
proof of the stationary conditions of the variational functional and the theorem on the existence of ex-

tremum are provided in this paper. The stationary conditions are displacement and electric potential

conditions on the boundary, surface traction and surface charge condition, and inter-element continuity

condition. Based on the assumed intra-element and frame fields as well as the newly constructed dual

variational functional, an element stiffness matrix equation is obtained which is implemented into computer

programs for numerical analysis. The numerical results obtained here are in excellent agreement with the
analytical ones. Besides, further extension is possible, such as the use of HFEM piezoelectric element with

p-approach capabilities and/or some special Trefftz functions for handling local effects. The topic is under

working.
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