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Abstract

The paper presents a family of variational formulations of Trefftz finite elements wherein the assumed internal
displacement and electric potential fields a priori fulfil the governing differential equations of the problem over the
element sub-domain, while the inter-element continuity and the boundary conditions are enforced using a modified
variational principle together with an independent frame field defined on each element boundary. It is based on four
free energy densities, each with two kinds of independent variables as basic independent variables, i.e. (¢,D), (& E),
(¢,D), and (o, E). Based on the assumed intra-element and frame fields, an element stiffness matrix equation is obtained
which is implemented into computer programs for numerical analysis. Some numerical examples are considered to show
the application of the proposed formulation.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Variational functionals are essential and play a central role in the formulation of the fundamental
governing equations in the Trefftz finite element method (TFEM). They are at the heart of many numerical
methods such as boundary element methods, finite volume methods and TFEMs (Qin, 2000). During the
past decades, much work has been done concerning variational formulations for Trefftz numerical methods
(Jirousek, 1993; Jirousek and Zielinski, 1993; Piltner, 1985; Qin, 2000). Piltner (1985) presented two dif-
ferent variational formulations to treat special elements with holes or cracks. The formulation consists of a
conventional potential energy and a least square functional. The least square functional is not added as a
penalty function to the potential functional, but is minimized separately for the special elements consid-
ered. Jirousek (1993) developed a variational functional in which either the displacement conformity or the
reciprocity of the conjugate tractions is enforced at the element interface. Jirousek and Zielinski (1993)
obtained two complementary hybrid Trefftz formulations based on a weighted residual method. The dual
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formulations enforced more strongly the reciprocity of boundary tractions than the conformity of the
displacement fields. Qin (2000) presented a modified variational principle based hybrid Trefftz displace-
ment frame. The variational functional of Qin (2000) is, however, limited in that nodes containing un-
known displacements must connect with at least one inter-element boundary. To remove this limitation, we
present a set of variational functional for TFEM and apply it to piezoelectric problems in this paper. It
entails four variational functionals which are based on four free energy densities, each with two kinds of
independent variables as basic independent variables, i.e. (6,D), (¢, E), (¢,D), and (g, E). The stationary
conditions of these variational functionals and their theorem on the existence of extremum are also dis-
cussed. The stationary conditions are displacement and electric potential conditions on the boundary,
surface traction and surface charge condition, and inter-element continuity condition. These functionals
are suitable for piezoelectric analysis with TFEM. Numerical results are found to agree well with the
analytical solutions.

2. Basic equations for TFEM of piezoelectricity
2.1. Basic field equations and boundary conditions

Consider a linear piezoelectric material, in which the differential governing equations in the Cartesian
coordinates x; (i = 1,2,3) are given by

iy +bi=0, Di+g =0 inQ (M

where g;; is the stress tensor, D; is the electric displacement vector, a comma denotes partial differentiation
with respect to the coordinate x;, b, is the body force vector, g, is the electric charge density, Q is the
solution domain, and the Einstein summation convention over repeated indices is used. For an anisotropic
piezoelectric material, the constitutive relation is

&ij = — %:I;D) = S[D'klakl + guDr, Ei= %;):D) = —giu0u + Ay Dy (2a)
for (a,D) as basic variables,

0y = aHé:;E) = ijk/flkz —euiEy, Di=-— %Zm = epren + KBy (2b)
for (¢,E) as basic variables,

oy = %ﬁ;m = cf}k,sk, + hyiDy, Ei = %ZD) = hasen + 25Dy (2¢)
for (& D) as basic variables, and

& = %G;E) = sfjklak/ +duDy, D;= f%zm = dou + KEx (2d)
for (e,E) as basic variables, with

H(o,D) = —%sfj’.k,al-jak, +34DiD; — 8ij0;Dx (3a)

H (e, E) = 3cjyeien — 5, EiE; — ewjeiEx (3b)

H(S, D) = %Cgklgijgkl + %;LZD,D/ + hk”SUDk (30)
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where c,/k,, ”k] and sl/,d, l/k, are the stiffness and compliance coefficient tensor for E =0 or D =0, 7, «,

and 27, 4;; /¢, are the permittivity matrix and the conversion of the permittivity constant matrix for ¢ = 0 or
e=0, ¢ and E; are, respectively, the elastic strain tensor and the electric field intensity vector, ey; is
piezoelectric stress constants, gy; is piezoelectric strain constants. These constants have the following re-

lations:
F=6H" e=dd, K=k —d"c¢d, =" —dx")'d", g=dx")",
e =cf —cfd(w) 'd"eF, h=-fd(x’)", A=), A=) (4)

where superscript ‘7” denotes the transposition of a matrix.
The relation between the strain tensor and the displacement, u;, is given by

&y = 5ty + ug) ()
and the electric field components are related to the electric potential ¢ by
E; = _Q{’Ai (6)
The boundary conditions of the boundary value problem (1)-(6), can be given by:
u; =1u; on Fu (7)
ti = O'l'jnj = ?i on F, (8)
D,, = D[I’l[ = _qn = En on FD (9)
o=¢ onr, (10)

where u;, ¢, g, and ¢ are, respectively, prescribed boundary displacement, traction vector, surface charge
and electric potential, an overhead bar denotes prescribed value, I' = I', + I, = I'p + ' is the boundary of
the solution domain Q.

Moreover, in the Trefftz finite element form, Eqgs. (1)-(10) should be completed by the following inter-
element continuity requirements:

Uie = iy, ¢, =¢, (onI.NIy, conformity) (11)

tie +ty =0, D, +D, =0 (onI.NIy, reciprocity) (12)

where ‘¢’ and ‘f” stand for any two neighboring elements. Egs. (1)—(12) are taken as the basis to establish the
modified variational principle for Trefftz finite element analysis of piezoelectric materials.

2.2. Assumed fields

The main idea of the TFEM is to establish a finite element (FE) formulation whereby the intra-element
continuity is enforced on a non-conforming internal displacement field chosen so as to a priori satisfy the
governing differential equation of the problem under consideration (Qin, 2000). In other words, as an
obvious alternative to the Rayleigh-Ritz method as a basis for a FE formulation, the model here is based
on the method of Trefftz (1926). With this method the solution domain is subdivided into elements, and
over each element “‘e,” the assumed intra-element fields are
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Uup Zjl N1
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where ¢; stands for undetermined coefficient, and a(= {a;, iy, 113, qVS}T) and N are known functions. If the
governing differential equation (1) is rewritten in a general form

Ru(x) +b(x) =0 (x€Q,) (14)

where R stands for the differential operator matrix for Eq. (1), x for the position vector,
b(= {{by,b,,b3,4,}") for the known right-hand side term, the overhead bar indicates the imposed quan-
tities and €, stands for the eth element sub-domain, then u = u(x) and N = N(x) in Eq. (13) have to be
chosen such that

Ri+b=0 and RN =0 (15)

everywhere in ©,. A complete system of homogeneous solutions N; can be generated by way of the solution
in Stroh formalism

u=2Re{A(f(z,))c} (16)

where ‘Re’ stands for the real part of a complex number, A is the material eigenvector matrix which was well
defined in the reference (Qin, 2001, pp. 17, 18), (f(z,)) = diag[f(z1) f(z2) f(z3) f(z4)] is a diagonal 4x4
matrix, while f(z) is an arbitrary function with argument z; = x| + pix, - p; (i = 1-4) are the material
eigenvalues. Of particular interest is a complete set of polynomial solutions which may be generated by
setting in Eq. (16) in turn

f(z) = z }
. k=1,2,... 17
Fle) =ik ( ) (17)
where 1 = v —1. This leads, for N; of Eq. (13), to the following sequence
Ny, =2Re{A(z)} (18)
N1 = 2Re{A(iz])} (19)

The unknown coefficient ¢ may be calculated from the conditions on the external boundary and/or the
continuity conditions on the inter-element boundary. Thus various Trefftz element models can be obtained
by using different approaches to enforce these conditions. In the majority of cases a hybrid technique is
used, whereby the elements are linked through an auxiliary conforming displacement frame which has the
same form as in the conventional FE method. This means that, in the Trefftz finite element approach, a
conforming electric potential and displacement (EPD) field should be independently defined on the element
boundary to enforce the field continuity between elements and also to link the coefficient ¢, appearing in
Eq. (13), with nodal EPD d (= {d}). The frame is defined as

i N,
- Uy N, N
={ “3=<=?3d=Nd I, 20
0= (=8 (xer.) (20)
¢ N,

where the symbol “~” is used to specify that the field is defined on the element boundary only, d = d(c)
stands for the vector of the nodal displacements which are the final unknowns of the problem, I', represents
the boundary of element ¢, and N is a matrix of the corresponding shape functions which are the same as
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D(dp) C(d.)

Ad,) O B(dg)

Fig. 1. A quadrilateral element generalized two-dimensional problem.

those in conventional FE formulation. For example, along the side 4-O-B of a particular element (see
Fig. 1), a simple interpolation of the frame displacement and electric potential can be given in the form

U

- u d

i(x) = uj = [N, NB}{dZ} (x €T (21)
where

NA = dlag[N1 N] N] N] ], NB = d1ag[N2 N2 N2 Nz], (22)

d, = {MlA Uy U3y ¢A }T, dz = {M1B Up U3p d’B }T (23)
with

_ 1-¢ _ 14+¢
N = 5 N, = —5— (24)

Using the above definitions the generalized boundary forces and electric displacements can be derived
from Egs. (8), (9) and (13), and denoted as

h a1, 4 Q
) Y ) Q, -

T = = ST = o + C = T + C 25
13 O'3jl’lj {3 Q3 Q ( )
Dn Djnj Dn Q4

where #, and D, are derived from .

3. Modified variational principles

The Trefftz finite element equation for piezoelectric materials can be established by the variational ap-
proach (Qin, 2000). Since the stationary conditions of the traditional potential and complementary vari-
ational functional cannot satisfy the inter-element continuity condition which is required in the Trefftz finite
element analysis, some new variational functionals need to be developed. For this purpose, we present the
following four modified variational functionals suitable for Trefftz finite element analysis:

=y = {me - |
I

e e De

(0, - D)jas - |

T'e

(;i — l‘,-)ftl-ds + /

T

(D + tii1;) ds} (26a)
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i Y

Z{nfE /’¢ d))D,,der/r (it,-fu,-)iidsz/r a,.z,.dsfz/r (]BD,,dsf/r (<;~5Dn+ﬁiti)ds}

(26b)
=18
:E{HgD—/FDe(En—Dn)qédsju/m(u,-—u,-)i,-ds—z/n ﬁ,-tids—i-/r[ (Dup — tii;) ds } (26¢)

e e
oE __ oF
Hr - E : Hmc

_Z{HGE / (¢ — $)D,ds — /(?,-—t,-)ﬁids—z/ Dnéds—/(Dné—tiﬁf)ds} (26d)
I'pe T Ipe Tre

e e

where
n’ = / H(s,D) dQ+/ 1 ds+/ D,$ds (27a)
Tye (/)e

HZE = // [H(E, E) — B;ui — qbd)] dQ + / Eiﬁ[ dS + Bnqus, (27b)
Qe T'ee Fl)e

- / / [H(2, D) — ] dQ + / B ds + / Dydds (27¢)
Q, T r([w

mn* = // (6,E)] — gpd] dQ+/ ti;ds + | D,gds (27d)

Tye I'pe

in which Eq. (1) is assumed to be satisfied, a priori. The terminology “modified principle” refers here to the
use of a conventional functional (IIY" here) and some modified terms for the construction of a special
variational principle to account for additional requirements such as the condition defined in Egs. (11) and
(12).

The boundary I', of a particular element consists of the following parts:

Fe:FueUFIeUFIe:F(peUFDeUFIe (28)
where
Te=T,NT., To=T,NT., Tye=TyNT., T'p.=TpNT, (29)

and I is the inter-element boundary of the element ‘e’. We now show that the stationary condition of
the functional (26) leads to Egs. (7)—(12), (u; = &; on I';) and (¢ = ¢ on I'p), and present the theorem on the
existence of extremum of the functional, which ensures that an approximate solution can converge to the
exact one. Taking I17” as an example, we have the following two statements:

(a) Modified complementary principle
oM =0= (7)-(12) (w; =@ onI,) and (¢ = ¢ on I'p) (30)

where 6 stands for the variation symbol.
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(b) Theorem on the existence of extremum
If the expression

/ / 8’H(o,D)dQ + / ot;0u;ds + / 5D, ds + / (8D, + 0i;0t;) ds (31)
Q I, I'p e Ire

is uniformly positive (or negative) in the neighborhood of uy, where uy is such a value that
%P (up) = (I1°7),, and where (I1°”), stands for the stationary value of I1?°, we have
;P > (1177),  [or 11,7 < (I1177),)] (32)

in which the relation that u, = u, is identical on I'. N I'; has been used.

Proof. First, we derive the stationary conditions of functional (26a). To this end, performing a variation of
I1°P and noting that Eq. (1) holds true a priori by the previous assumption, we obtain

P = / (w; — u;)ot;ds —|—/ (¢ — ¢)oD, ds — / [(& — t;)00; — (8; — u;)0t;]ds
Iy Ly

- /r (D, — D,)3¢ — (¢ — $)oD,]ds + > /r (6 — u:)dt; + (¢ — $)OD, + 1;0i; + D, P ds
(33)

Therefore, the Euler equations for expression (33) are Egs. (7)—(12), (v, = &; on I';), and (¢ = ¢~> on I'p), as
the quantities 6t;, du;, d¢, 6D,, du; and ¢ may be arbitrary. The principle (30) has thus been proved. This
indicates that the stationary condition of the functional satisfies the required boundary and inter-element
continuity equations and can thus be used for deriving Trefftz finite element formulation.

As for the proof of the theorem on the existence of extremum, we may complete it by way of the
so-called ““second variational approach” (Simpson and Spector, 1987). In doing this, performing variation
of 6I1°” and using the constrained conditions (1), we find

SI°P = / / 8’H(s,D)dQ + / 1,01 ds + / oD, 6pds + > / (8D, + 0i;0t;) ds
Q I I'p e I're

= expression (31) (34)

Therefore the theorem has been proved from the sufficient condition of the existence of a local extreme
of a functional (Simpson and Spector, 1987). This completes the proof. The functional given in Eqs. (26b)-
(26d) can be stated and proved similarly. We omit those details for the sake of conciseness. [

4. Element stiffness matrix

The element matrix equation can be generated by setting 61T, = 0. To simplify the derivation, we first
transform all domain integrals in Eq. (26a) into boundary ones. In fact, by reason of the solution properties
of the intra-element trial functions, the functional I1°2 can be simplified to

12 = =3 [ G+ D)= [ bu+agrae— [ @ -pgds— [ G- syinas
r. Q I'pe Tee

+/ (D,,(Z)—i—t,—ﬁ,-)ds—i—/ t,-l?t,-ds—i—/ D,¢ds (35)
Iy Tye r

pe

e
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Substituting the expressions given in Egs. (13), (20), and (25) into (35) produces

%2 = —Lc"He + ¢"Sd + ¢"r; + d'r; + terms without ¢ or d (36)
in which the matrices H, S and the vectors ry, r; are defined by
H= / Q"Nds (37)
I
. Q'[N .
S = / Q;N,ds +/ Q, N, | ds +/ Q'Nds (38)
Ipe Te | Q, N, Te
1 o 1 _ _ Q ! u
r=—- / (N'T + Q") ds — - /NdeQ+/ Q4T¢ds+/ Q, i, pds (39)
2 Jr, 2 Jo Tge T | Q i
3 3
~ T o _
. L N, f 1
I = N} (D, —D,)ds +/ NTTds +/ N, Lp—<b ds (40)
I'pe Ie Tie I\VI3 ;3 23

To enforce inter-element continuity on the common element boundary, the unknown vector ¢ should be
expressed in terms of nodal DOF d. An optional relationship between ¢ and d in the sense of variation can
be obtained from

ore?
S = —He+Sd+n =0 (41)
This leads to
c=Gd+g (42)

where G = H™'S and g = H'ry, and then straightforwardly yields the expression of 11°? only in terms of d
and other known matrices

172 = 1d"G'HGd + d" (G"Hg + 1,) + terms without d (43)

Therefore, the element stiffness matrix equation can be obtained by taking the vanishing variation of the
functional I1°° as

oD
2 =0=Kd=P 44
ad" (44)
where K = G'HG and P = —G"Hg —r, are, respectively, the element stiffness matrix and the equivalent

nodal flow vector. The expression (44) is the elemental stiffness-matrix equation for Trefftz finite element
analysis.

5. Numerical examples

Since the main purpose of this paper is to outline the basic principles of the TFEM in piezoelectric
materials, the assessment will be limited to two simple examples. In order to allow for comparisons with
other solutions appearing in references (Ding et al., 1998; Pak, 1990), the obtained results are limited to a
piezoelectric prism subjected to simple tension and an anti-plane crack of length 2¢ embedded in an infinite
PZT-5H medium.
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Fig. 2. Geometry of the piezoelectric prism in example.
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Example 1. A piezoelectric prism subjected to simple tension (see Fig. 2). This example was taken from
Ding et al. (1998) for a PZT-4 ceramic prism subject to a tension P =10 Nm~2 in y-direction. The
properties of the material are given as follows

e =126 x 10° Nm™2, ¢ =778 x 10" Nm™2, ¢33 = 743 x 10" Nm™?

C3333 — 11.5 x 1010 Nmfz, C323) — 2.56 x 1010 Nrn*z, e131 — 12.7 Cm_z

e3|] = -5.2 Cmfz, €333 = 15.1 Cmfz, K11 = 7301(?0, K33 = 635K0

where ko = 8.854 x 107! C2/Nm?. The boundary conditions of the prism are

oy =P, 0y,=D,= 0 onedgesy=+b

0w =0y =D, =0 onedges x=+a

where a = 3 m, b = 10 m. Owing to the symmetry about load, boundary conditions and geometry, only one
quadrant of the prism is modeled by 10 (x-direction)x 20 (y-direction) elements in the TFEM analysis.
Table 1 lists the displacements and electric potential at points A, B, C, and D using the present method and

Table 1
uy, uy, and ¢ of TFEM results and comparison with exact solution
Points
A(2,0) B(3.0) C(0,5) D(0,10)
TFEM
u; x 10'% (m) -0.9674 —-1.4510 0 0
uy x 10° (m) 0 0 0.5009 1.0016
¢ (V) 0 0 0.6890 1.3779
Exact (Pak, 1990)
uy x 10'° (m) -0.9672 —1.4508 0 0
uy x 10° (m) 0 0 0.5006 1.0011
¢ (V) 0 0 0.6888 1.3775
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Fig. 3. Configuration of the cracked infinite piezoelectric medium.
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Fig. 4. Geometry of the cracked solid in finite element analysis.

2.0+
~ Qin (2000)
—— TFEM

1.54
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-4 ' -2 0 2 4 ' 6 8
D_(10°Qn?)

Fig. 5. Energy release rate in cracked PZT-5H plate (a/c = 15, 24x24, and 1., = 4.2 x 10® N/m?).
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Table 2
h-convergence study for J/J,, central cracked piezoelectric plate (a/c = 15, Do, = 2 x 1073 C/m?, and 7, = 4.2 x 10° N/m?)
Meshes J e
8x8 1.5954
12x12 1.5908
16x16 1.5899
20x20 1.5895
24 x24 1.5893

comparison is made with analytical results. It is found that the TFEM results are in good agreement with
analytical ones (Ding et al., 1998).

Example 2. An anti-plane crack of length 2¢ embedded in an infinite PZT-5H medium. Consider an anti-
plane crack of length 2¢ embedded in an infinite PZT-5H medium which is subjected to a uniform shear
traction, ¢,, = 7, and a uniform electric displacement, D, = D, at infinity (see Fig. 3). The material
properties of PZT-5H are given by Pak (1990): c44 = 3.53 x 10'° N/m?, e;5 = 17.0 C/m?, x;; = 1.51 x 1073
C/Vm, J; = 5.0 N/m, where J; is the critical energy release rate. In the calculation, one quarter of the
geometry configuration shown in Fig. 4 is used. The energy release rate for PZT-5H material with a crack of
length 2¢ = 0.02 m and a/c = 15 (it can be shown that the numerical results is nearly independent of a/c if
a/c = 10) is plotted in Fig. 5 as a function of electrical load with the mechanical load fixed such that J = J;
at zero electric load. The results are compared with those from Qin (2000). It is found from Fig. 5 that the
energy release rate can be negative which means the crack growth may be arrested.

To study the convergent performance of the proposed formulation, numerical results for different ele-
ment meshes (8x8, 12x12, 16x16, 20x20, and 24 x24) are presented in Table 2 that the A-extension
performs very nicely.

6. Conclusion

A family of modified variational principles of piezoelectricity is presented for Trefftz finite element
analysis. It includes four variational functionals which are based on four free energy densities, each with
two kinds of independent variables as basic independent variables, i.e (¢,D), (¢, E), (¢,D), and (6, E). The
proof of the stationary conditions of the variational functional and the theorem on the existence of ex-
tremum are provided in this paper. The stationary conditions are displacement and electric potential
conditions on the boundary, surface traction and surface charge condition, and inter-element continuity
condition. Based on the assumed intra-element and frame fields as well as the newly constructed dual
variational functional, an element stiffness matrix equation is obtained which is implemented into computer
programs for numerical analysis. The numerical results obtained here are in excellent agreement with the
analytical ones. Besides, further extension is possible, such as the use of HFEM piezoelectric element with
p-approach capabilities and/or some special Trefftz functions for handling local effects. The topic is under
working.
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